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Abstract
The Einstein equations admit the class of regular solutions generated by stress-
energy tensors representing vacuum with the reduced symmetry as compared
with the maximally symmetric de Sitter vacuum. In the spherically symmetric
case they describe, in particular, gravitational vacuum solitons with the de Sitter
center whose mass is related to the de Sitter vacuum trapped inside and
smooth breaking of spacetime symmetry from the de Sitter group in the origin
to the Poincaré group at infinity. In nonlinear electrodynamics coupled to
gravity and satisfying the weak energy condition, an electrovacuum soliton
has an obligatory de Sitter center where the electric field vanishes while the
energy density of the electromagnetic vacuum achieves its maximal finite
value which gives a natural cutoff on self-energy. By the Gürses–Gürsey
algorithm based on the Trautman–Newman technique it is transformed into
a spinning electrovacuum soliton asymptotically Kerr–Newman for a distant
observer, with the gyromagnetic ratio g = 2. The de Sitter center becomes
the de Sitter equatorial disk which has properties of a perfect conductor and
ideal diamagnetic. The interior de Sitter vacuum disk displays superconducting
behavior within a single spinning particle. This behavior is generic for the class
of spinning electrovacuum solitons. The de Sitter vacuum supplies a particle
with the finite electromagnetic mass related to breaking of spacetime symmetry.

PACS numbers: 04.70.Bw, 04.20.Dw

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Approach. We report here the results obtained in the frame of a model-independent analysis of
relevant field equations. Such an approach allows one to reveal the basic information contained
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in the equations and thus generic behavior implied by them. For the case of electromagnetically
interacting objects the relevant equations come from nonlinear electrodynamics coupled to
gravity.

The Einstein equations

Gµ
ν = Rµ

ν − 1
2Rδµ

ν = −κ
〈
T µ

ν

〉
, κ = 8πG (1.1)

tell us that there exists the class of regular solutions with the de Sitter center, specified
by [1, 2]

T 0
0 = T 1

1 , (1.2)

which represents an anisotropic vacuum dark fluid [3], and describes spherical objects whose
masses are related to de Sitter vacuum and (smooth) breaking of spacetime symmetry from
the de Sitter group in the origin to the Poincaré group at infinity [4, 5].

In nonlinear electrodynamics coupled to gravity solutions of this class represent spherical
electrovacuum solitons (the only contribution to a stress-energy tensor comes from a source-
free electromagnetic field which always satisfies (1.2)). By the Gürses–Gürsey algorithm it
gives rise to the class of regular axially symmetric solutions, asymptotically Kerr–Newman
for a distant observer, describing spinning charged objects (s = h̄/2, g = 2) with the finite
positive electromagnetic mass related to breaking of spacetime symmetry and to interior
rotating superconducting de Sitter vacuum [6].

Maximally symmetric de Sitter vacuum is associated with the Einstein cosmological term [7, 8]

〈
T ν

µ

〉 = 〈ρvac〉δν
µ = κ−1�δν

µ (1.3)

and satisfies the equation of state

p = −ρ. (1.4)

From the Einstein equations (more precisely from the contracted Bianchi identities) it follows

G
µ

ν;µ = 0 ⇒ 〈ρvac〉 = const. (1.5)

The de Sitter vacuum was identified as a vacuum by the algebraic structure of its stress-
energy tensor: all eigenvalues are equal. As a result it has an infinite set of co-moving
reference frames which makes impossible to fix a velocity with respect to it [7].

A vacuum with a reduced symmetry. The symmetry of a vacuum stress-energy tensor (1.3)
can be reduced keeping its vacuum identity, i.e., invariance under Lorentz boosts in one (or
two) spacelike directions ([3] and references therein)

pk = −ρ. (1.6)

A stress-energy tensor satisfying (1.6), is invariant under Lorentz boosts in the kth
direction(s), so that one cannot single out a preferred co-moving reference frame and thus
determine the velocity with respect to a medium specified by (1.6)—which is the intrinsic
property of a vacuum [9].

A vacuum defined by the symmetry of its stress-energy tensor, must be evidently
anisotropic (except the maximally symmetric de Sitter vacuum (1.3)).

Variability of a vacuum density ρvac for a vacuum with the reduced symmetry follows
from the Einstein equations: G

µ

ν;µ = 0 leads to ρvac �= const and to the equation of state for
the case of a particular symmetry.

In the spherically symmetric case, anisotropic spherically symmetric vacuum is defined
by [1, 2, 4]

T t
t = T r

r , T θ
θ = T

φ
φ . (1.7)
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A regular vacuum stress-energy tensor (1.7) describes a smooth continuous
de Sitter–Schwarzschild transition relating de Sitter vacuum T µ

ν = ρvacδ
µ
ν in the center with

the Minkowski vacuum T µ
ν = 0 at infinity

T µ
ν deSitter ←− T µ

ν −→ T µ
ν Minkowski.

It satisfies the equation of state for anisotropic perfect fluid with continuous density and
pressures [1]

pr = −ρ, p⊥ = −ρ − r

2
ρ ′. (1.8)

Globally regular spherically symmetric spacetime with de Sitter center [5] (for a recent
review [3, 10]) represents, dependently on the choice of observers (coordinate mapping)
distributed or localized vacuum energy: regular vacuum dominated cosmologies [11–13],
vacuum nonsingular black holes [1, 14] (for review [10, 15]) and self-gravitating vacuum
compact objects without horizons [16, 17], called G-lumps [4] which are stable for a wide
class of density profiles ρ(r) [3].

The existence of the class of solutions with de Sitter center follows from the requirements
of regularity of density, finiteness of the mass and the weak energy condition for Tµν . Masses
of objects are generically related to smooth breaking of spacetime symmetry from the de Sitter
group in the origin, and to de Sitter vacuum trapped inside [2, 4, 17–21].

Another approach involving an interior de Sitter vacuum is based on direct matching of
de Sitter interior to the Schwarzschild exterior via thin transitional shell where the metric
typically suffers from discontinuities [22–31].

Contained in general relativity class of solutions specified by (1.6) which describe time
dependent and spatially inhomogeneous vacuum energy, represents a model-independent
unified description (based on a spacetime symmetry) of dark ingredients in the universe
by a vacuum dark fluid which can both be distributed and form gravitationally bound compact
vacuum objects [3].

In the context of a vacuum fluid unification, relation dark energy–dark matter (not
necessary dark) may appear quite nontrivial. In nonlinear electrodynamics coupled to
gravity spherically symmetric electrovacuum soliton must have obligatory de Sitter center
[32] which for a spinning particle transforms into rotating de Sitter vacuum disk displaying
superconducting behavior within a single spinning particle [6].

This paper is organized as follows. In section 2, we outline the basic features of
regular spacetimes with de Sitter center. In section 3, we present spinning superconducting
electrovacuum soliton. In section 4, we outline estimates confronting electrovacuum soliton
with experiments, and in section 5 we summarize the results.

2. Spherically symmetric spacetime with de Sitter center

The existence of the globally regular spherically symmetric geometries follows from the
following requirements [4]:

(a) Regularity of density ρ(r),
(b) Finiteness of the mass m = 4π

∫ ∞
0 ρ(r)r2 dr ,

(c1) Dominant energy condition for Tµν which implies ρ � 0; ρ +pk � 0 for any observer, and
pk � ρ for each principal pressure (which in turn implies speed of sound never exceeding
speed of light, vs � c).

The second option is

3
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(c2) Weak energy condition for Tµν which is contained in the dominant energy condition and
requires only ρ � 0; ρ + pk � 0 for any observer. Two cases (c) differ in that the case
(c2) admits smooth changes in topology of spacelike hypersurfaces ([10] and references
therein).

Conditions (a)–(c) lead to the existence of the family of geometries with the regular
center [4]. The famous example from this family is boson stars [33, 34] which are regular
configurations without horizons generated by self-gravitating massive complex scalar field
whose stress-energy tensor is essentially anisotropic.

Class of geometries with the de Sitter center contained in this family is specified by (1.7). A
static spherically symmetric line element is given by [1, 4]

ds2 = g(r) dt2 − dr2

g(r)
− r2 d	2, (2.1)

where d	2 is the metric on a unit 2-sphere, and the metric function g(r) is given by

g(r) = 1 − Rg(r)

r
, Rg(r) = 2GM(r), (2.2)

with the mass function

M(r) = 4π

∫ r

0
ρ(x)x2 dx. (2.3)

The metrics are asymptotically Schwarzschild at large r and asymptotically de Sitter as r → 0

1 − �

3
r2 ← g(r) → 1 − 2Gm

r
,

where the mass parameter m (gravitational mass) is given by

m = 4π

∫ ∞

0
ρ(r)r2 dr (2.4)

and the cosmological constant � is related to the density of the de Sitter vacuum ρ0 by

� = κρ0. (2.5)

The weak energy condition leads to the monotonic decrease of a density profile, ρ ′ � 0,
and the requirement of regularity leads to the obligatory de Sitter center [4, 5, 32]. Spacetime
can have not more than two Killing horizons, a black hole horizon r+ and an internal horizon
r− related to appearance of de Sitter vacuum instead of a Schwarzschild singularity [4].

In the coordinates of a distant observer at rest (e.g., r, t in (2.1)) the class of solutions
specified by (1.2), describes compact objects dominated by anisotropic vacuum dark fluid (the
word ’dark’ refers to their interiors), a black hole for m � mcr, and self-gravitating vacuum
soliton, G-lump for m < mcr [16, 17, 4].

Three compact vacuum configurations (a black hole, extreme black hole and G-lump) are
shown in figure 1 plotted for the density profile [1]

ρ(r) = ρ0 e−r3/r2
0 rg , r2

0 = 3/κρ0, rg = 2Gm, (2.6)

which describes a smooth de Sitter–Schwarzschild transition in a simple semiclassical model
for vacuum polarization in the spherically symmetric gravitational field ([16] and references
therein). In this case the critical mass is mcr 
 0.3mPl

√
ρPl/ρ0.

Hawking temperature. Nonsingular vacuum black hole emits Hawking radiation from
both black hole and internal horizons with the Gibbons–Hawking temperature TH =
h̄ϒ(2πkc)−1[35], where ϒ is the surface gravity. The form of the temperature–mass diagram,

4
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Figure 1. The metric function g(r) for compact vacuum objects with de Sitter center. Mass m is
normalized to mcr.

Figure 2. Typical behavior of the Hawking temperature for a regular vacuum black hole.

shown in figure 2, is generic for de Sitter–Schwarzschild geometry. The temperature on the
BH T+ horizon drops to zero as m → mcr, while the Schwarzschild asymptotic requires
T+ → 0 as m → ∞. As a result the temperature–mass curve has a maximum between mcr

and m → ∞, where a specific heat is broken and changes its sign testifying for a second-order
phase transition in the course of Hawking evaporation and suggesting restoration of spacetime
symmetry to the de Sitter group in the origin [17].

For the density profile (2.6)

T+ = h̄c

4πkr0

[
r0

r+
− 3r+

r0

(
1 − r+

rg

)]
. (2.7)

Temperature achieves its maximal value Tmax at the value of mass parameter mtr . They are
given by

mtr 
 0.4mPl

√
ρPl/ρ0, Tmax 
 0.2TPl

√
ρPl/ρ0.

For the scale of symmetry restoration M ∼ 1015 GeV,

mcr 
 0.3 × 1011 GeV, mtr 
 0.2 × 1011 GeV

Tmax 
 0.2 × 1011GeV. (2.8)

In the course of Hawking evaporation a black hole evolves toward a G-lump [4, 16, 17],
particlelike or starlike dependently on mass and the scale ρ0 of interior de Sitter vacuum, bound

5



J. Phys. A: Math. Theor. 41 (2008) 304033 I Dymnikova

Figure 3. G-lump in the case rg = 0.1r0 (m 
 0.06mcrit).

Figure 4. Horizons and surfaces r = rs and r = rc .

by their own gravity balanced at the zero-gravity surface where the strong energy condition
(ρ +

∑
pk � 0) is violated and gravitational attraction becomes gravitational repulsion.

G-lump is plotted in figure 3 for the density profile (2.6).
A zero-gravity surface r = rc exists for any geometry with a de Sitter center and is defined

by p⊥(r) = 0 [2, 16].
For configurations satisfying the weak energy condition, there exist two additional

characteristic surfaces: surfaces of zero 4- and 3-curvature. The surface of zero scalar
4-curvature r = rs (R(rs) = 0) represents the characteristic curvature size in the de Sitter–
Schwarzschild geometry in the case (c2). Surfaces r = rc and r = rs are depicted in figure 4
together with horizons. For the density profile (2.6) the characteristic size rs is given by [16]

rs =
(

4

3
r2

0 rg

)1/3

=
(

m

πρ0

)1/3

. (2.9)

Cosmological term as a source of mass. Vacuum with the reduced symmetry can be
associated with a time-evolving spatially inhomogeneous cosmological term [2]

�i
k = κT i

k . (2.10)
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Figure 5. The gravitational potential g(r) for the case of G-lump with the mass a little bit less
than mcr.

The Einstein equation with the cosmological term is generalized to [2, 4]

Gµ
ν + �δµ

ν = 0 −→ Gµ
ν + �µ

ν = 0,

so that the Einstein cosmological constant � becomes time-evolving and space-
inhomogeneous component �t

t = κT t
t = κρ of the variable cosmological term (2.10).

The mass (2.4) is defined thus, in the asymptotically flat case, by [4]

m = 1

2G

∫ ∞

0
�t

t (r)r
2 dr (2.11)

and is generically related to an interior de Sitter vacuum.
This picture conforms with the basic idea of the Higgs mechanism for generation of mass

via spontaneous breaking of symmetry of a scalar field vacuum from a false vacuum to a true
vacuum state. In both cases de Sitter vacuum is involved and vacuum symmetry is broken.

The difference is that the gravitational potential g(r) (shown in figure 5) is generic, and
the de Sitter vacuum supplies a particle with mass via smooth breaking of spacetime symmetry
from the de Sitter group in its center to the Poincaré group at its infinity in the asymptotically
flat spacetime [4]

de Sitter group 0 ←− r −→ ∞ Poincare group

or to the de Sitter group with another value of vacuum density in the asymptotically de Sitter
spacetime with λ < � ([21] and references therein).

3. Spinning superconducting electrovacuum soliton

3.1. Kerr–Newman spacetime

The Kerr–Newman line element is given by [36]

ds2 = dt2 − (2mr − e2)

�
(dt − a sin2 θ dφ)2 − �


dr2 − � dθ2 − (r2 + a2) sin2 θ dφ2

(3.1)

7
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� = r2 + a2 cos2 θ,  = r2 − 2mr + a2 + e2. (3.2)

The associated electromagnetic potential is

Ai = −er

�
[1; 0, 0,−a sin2 θ ]. (3.3)

The parameter m represents the mass and e the charge in the limit of large r. The parameter
a is identified as the specific angular momentum ([37] and references therein).

Since the parameter a couples with the mass to give the angular momentum ma, and
with the charge to give an asymptotic magnetic dipole momentum ea, there is no freedom
of variation of the gyromagnetic ratio e/m, which appears exactly the same as predicted by
the Dirac equation for a relativistic quantum spinning particle. Therefore one can choose
the parameters in (3.1)–(3.3) in such a way that they correspond to the electron parameters,
m ≈ 10−22;ma = 1/2; e2 ≈ 1/137 in the units h̄ = c = G = 1. The resulting characteristic
length scale is the Compton radius [37].

The Kerr–Newman geometry belongs to the Kerr family of solutions of the source-free
Maxwell–Einstein equations, the only contribution to the stress-energy tensor comes from a
source-free electromagnetic field [37].

In the Kerr family solutions the surfaces r = const are confocal oblate ellipsoids of
revolution whose principal axis coincide with the coordinate axes. They are described by (see,
e.g., [38])

r4 − (x2 + y2 + z2 − a2)r2 − a2z2 = 0. (3.4)

For r = 0 the ellipsoids degenerate to the disk

x2 + y2 � a2, z = 0 (3.5)

encircled by the ring

x2 + y2 = a2, z = 0 (3.6)

and the singularity along this ring is the only singularity of the Kerr and the Kerr–Newman
spacetime called the Kerr ring singularity (see [38] for systematic description).

The main disaster of the Kerr–Newman geometry discovered by Carter is nontrivial
causality violation in the case of a charged spinning particle [37]

a2 + e2 > m2. (3.7)

In this case, there are no Killing horizons, the manifold is geodesically complete (except
for geodesics which reach the singularity at � = 0), and any point can be connected to any
other point by both a future and a past directed timelike curve. The condition of the causality
violation

r2 + a2 + �−1(2mr − e2)a2 sin2 θ < 0 (3.8)

is satisfied in the vicinity of the Kerr disk where the vector ∂/∂φ is timelike, but closed timelike
curves entering the region (3.8) can extend over the whole space and cannot be removed by
taking a covering space [37].

The Kerr–Newman solution represents the exterior fields of rotating charged bodies. The
question of a physically natural interior material source for these fields is the most intriguing
question, because this geometry which implies the gyromagnetic ratio g = 2 favored by
particle physics, encounters gross causality problem just in the case of a particle.

The source models for the Kerr–Newman interior can be roughly divided into disklike
[39–43], shelllike [44–46], baglike [47–53] and stringlike ([54] and references therein).

8
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Below we outline the results obtained in [6, 32]. In nonlinear electrodynamics coupled to
general relativity and satisfying the weak energy condition, a regular spherically symmetric
electrically charged structure has an obligatory de Sitter center. By the Gürses–Gürsey
algorithm based on the Newman–Trautman technique it is transformed into a spinning
electrovacuum structure asymptotically Kerr–Newman for a distant observer, with the
gyromagnetic ratio g = 2.

3.2. Basic equations of nonlinear electrodynamics coupled to gravity

In the nonlinear electrodynamics minimally coupled to gravity, the action is given by

S = 1

16πG

∫
d4x

√−g[R − L(F )], (3.9)

where R is the scalar curvature, and F = FµνF
µν is the electromagnetic invariant, with

Fµν = ∂µAν − ∂νAµ. The gauge-invariant electromagnetic Lagrangian L(F ) is an arbitrary
function of F which should have the Maxwell limit, L → F,LF → 1 in the weak field regime.

The dynamic equations read

∇µ(LF Fµν) = 0, (3.10)

where LF = dL/dF , and the contracted Bianchi identities give

∇µ
∗Fµν = 0. (3.11)

An asterisk denotes the Hodge dual defined by [9]
∗Fµν = 1

2ηµναβFαβ, ∗Fµν = 1
2ηµναβF αβ (3.12)

and the totally antisymmetric unit tensor is chosen in such a way that η0123 = √−g.
In terms of the field vectors defined as

E = {Fα0}, D = {LF F 0α}, B = {∗Fα0}, H = {LF
∗F0α} (3.13)

the field equations (3.10) and (3.11) take, respectively, the conventional form of the Maxwell
equations

∇D = 0, ∇ × H = ∂D
∂t

,

∇B = 0, ∇ × E = −∂B
∂t

.

(3.14)

The stress-energy tensor of a nonlinear electromagnetic field is calculated in the standard way
[9] which gives

κT µ
ν = −2LF FναFµα + 1

2δµ
ν L. (3.15)

3.3. Spherically symmetric electrovacuum soliton

The stress-energy tensor of the spherically symmetric electromagnetic field with an arbitrary
gauge-invariant Lagrangian L(F ), has the algebraic structure (1.2).

For the class of regular spherically symmetric geometries with the symmetry of a source
term given by (1.2), the weak energy condition leads inevitably to de Sitter asymptotic at
approaching a regular center [4].

Symmetry of a source term leads to the metric (2.1) which is asymptotically
Reissner–Nordström in the weak field limit as r → ∞, with the electromagnetic mass

m = 4π

∫ ∞

0
ρEM(r)r2 dr. (3.16)

9
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In the spherically symmetric case the only essential components of Fµν are the radial electric
field F01 = E(r) and the radial magnetic field F23 = −F32.

For an electrically charged structure, the first dynamical equation (3.10) yields

F 01 = e

LF r2
, (3.17)

where e is a constant of integration identified as an electric charge by asymptotic behavior in
the weak field limit.

The field invariant is given by

F = 2F01F
01 = − 2e2

L2
F r4

. (3.18)

In the considered case F = −2E2 with E = e(LF r2)−1.
The equation of state relating density with the radial pressure and tangential pressure is

given by (1.8). With taking into account (3.15) it gives [32]

κ(p⊥ + ρ) = −FLF . (3.19)

In the de Sitter center the left-hand side of (3.19) vanishes.
From (3.18) and (3.19) we get

LF = 2e2

κ(p⊥ + ρ)r4
(3.20)

and

F = −κ2(p⊥ + ρ)2r4

2e2
. (3.21)

The invariant F vanishes as r → 0, so that the electric field vanishes in the center. Since
F vanishes at both zero and infinity where it should follow the Maxwell weak field limit, F
must have a minimum in between where an electric field strength has an extremum [32, 55].

The Lagrangian derivative LF goes to infinity as r → 0, so that a regular electrically
charged structure is not compatible with the Maxwell weak field limit, L → F,F → 0,LF →
1, at the center ([32, 55] and references therein).

On the other hand, the weak energy condition requires ρ ′ � 0. Then ρ is maximal at the
de Sitter center, and one cannot expect validity of the weak field limit in the region of maximal
energy density of the field [32].

The Lagrangian L(F ) → 2ρ0 as r → 0, by (3.19) and (3.15), so that Lagrangian is
positive and takes its maximal value at the center which testifies that the limiting density as
r → 0 is of electromagnetic origin.

In the de Sitter center of an electrovacuum soliton, electric field F goes to zero, while the
energy density of the electromagnetic field T 0

0 achieves its maximal value. The T 0
0 component

of electromagnetic stress-energy tensor does not vanish (neither diverges) as r → 0 and
provides an effective cutoff on self-interaction by relating it, through Einstein equations, with
cosmological constant � corresponding to the energy density of an electromagnetic vacuum
in the center of a soliton [32].

The weak energy condition, ρ + p⊥ � 0, leads to −FLF � 0. It gives LF � 0. Since
L(F ) is the monotonic function of the invariant F which evolves from zero at the center to zero
at infinity with a minimum in between, Lagrangian has two branches [32, 55], in other words,
there are two Lagrangians here, one for the interior region (from the center to the extremum
of the electric field tension), another for the exterior (asymptotically Maxwellian) region.

The strong energy condition for electrically charged configurations reads 2p⊥ = −L � 0.
It is violated at the surface of zero gravity where L = 0. The surface of zero gravity there
exists in any electrically charged electrovacuum soliton.

10
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3.4. Spinning electrovacuum soliton

Gürses and Gürsey have shown that spherically symmetric metrics of the Kerr–Schild class
[56] can be transformed, by the complex Trautman–Newman translations, to spinning metrics
[57]

ds2 = � − 2f

�
dt2 +

4af sin2 θ

�
dt dφ − �


dr2

−� dθ2 −
(

r2 + a2 +
2f a2 sin2 θ

�

)
sin2 θ dφ2, (3.22)

where now

 = r2 + a2 − 2f (r). (3.23)

The function f (r) comes from a spherically symmetric solution. In the rotating case the
surfaces of constant r are confocal ellipsoids given by (3.4).

The eigenvalues of Tµν are its components ρ, p⊥ and pr = −ρ in the co-rotating
references frame where each of ellipsoidal layers r = const rotates with the angular velocity
ω(r) = a/(r2 + a2) [53].

They are related to the function f (r) in (3.22) by

κρ(r) = 2
(f ′r − f )

�2
, κp⊥ = 2(f ′r − f ) − f ′′�

�2
. (3.24)

Static spherically symmetric solutions of the Einstein equations satisfying condition (1.2)
belong to the Kerr–Schild class [53, 58]. By the Gürses–Gürsey algorithm, a regular non-
rotating electrovacuum solution can be transformed into a regular spinning solution with the
gyromagnetic ratio g = 2 [6].

The function f (r) which comes to (3.22) from nonlinear electrodynamics coupled to
gravity is given by

f (r) = GM(r)r, (3.25)

where the mass function M(r) defined by (2.3) is

M(r) =
∫ r

0
ρ̃(x)x2 dx (3.26)

and ρ̃(r) is the spherically symmetric density profile responsible for the function f (r)

in (3.22).
For a spherically symmetric solution satisfying the weak energy condition, the function

f (r) is everywhere positive. For r → 0 it approaches the de Sitter asymptotic

2f (r) = r4

r2
0

, r2
0 = 3

�
= 3

8πGρ̃0
(3.27)

and then monotonically increases to the Kerr–Newman asymptotic for large r [6]

fde S = 4πρ̃0

3
r4 ←− f (r) −→ fKN = mr − e2

2
,

where m = M(r → ∞) is the finite positive electromagnetic mass given by (3.16) with
ρEM = ρ̃.

Non-negativity of f (r) guarantees that the condition of the causality violation (3.8) is
never satisfied.

In the equatorial plane

2f (r)

�
= r2

r2
0

, (3.28)

so that the equatorial disk r = 0 is totally (together with the ring) intrinsically flat.

11
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But � is nonzero throughout the disk.
The original non-rotating metrics are asymptotically de Sitter as r → 0 which is

asymptotically flat but with nonzero �. Rotation transforms the point r = 0 into the disk (3.5).
The metric (3.22) in this limit takes the form

ds2 =
(

r2

r2
0

− 1

)
dt2 +

r2


dr2 + r2 dθ − r2

r2
0

2a dt dφ +

(
r2 + a2 +

r2

r2
0

)
dφ2. (3.29)

The asymptotic (3.29) represents the rotating de Sitter vacuum with � spread over the
equatorial disk (3.5).

The equation of state in the co-rotating frame

pr(r, θ) = −ρ(r, θ), p⊥(r, θ) = −ρ − �

2r

∂ρ(r, θ)

∂r
(3.30)

relates the eigenvalues of the stress-energy tensor (3.24)

ρ(r, θ) = r4

�2
ρ̃(r) p⊥ =

(
r4

�2
− 2r2

�

)
ρ̃(r) − r3

2�
ρ̃ ′(r). (3.31)

The prime denotes the differentiation with respect to r.
At the ellipsoidal layers

r2

�
= (x2 + y2 + z2 − a2)r2 + a2z2

(x2 + y2 + z2 − a2)r2 + 2a2z2
. (3.32)

In the limit z → 0 it goes to the unity identically in the whole equatorial plane.
Taking the limit z → 0 in (3.32) we find that

ρ(r, θ) = ρ̃(r), p⊥ + ρ = − r3

2�
ρ̃ ′(r) (3.33)

identically in the whole equatorial plane including the disk, the ring and the origin. For
spherically symmetric solutions regularity requires rρ̃ ′(r) → 0 as r → 0 [32]. With taking
into account (3.32) we find that on the disk

r → 0, z → 0, r2/� → 1 (3.34)

the equation of state becomes

pr = p⊥ = −ρ (3.35)

and represents rotating de Sitter vacuum in the co-rotating frame.
At the de Sitter equatorial disk (3.34)–(3.35)

κρ(r, θ) = �. (3.36)

Nonzero field components compatible with the axial symmetry are F01, F02, F13, F23.
The field intensities are given by

Er = F10, Eθ = F20, Hr = LF

√−gF 23, Hθ = LF

√−gF 31,

Dr = LF F 01, Dθ = LF F 02,
√−gBr = F23,

√−gBθ = F31,
(3.37)

where

�F 01 = (r2 + a2)F10, � sin2 θF 31 = F31,

�F 02 = F20, �(r2 + a2) sin2 θF 23 = F23.
(3.38)

As follows from (3.37)–(3.38), the electric field intensity E is connected with the electric
induction D as

Dα = εαβEβ, (3.39)

12
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where εαβ is the tensor of the dielectric permeability, so that nonlinear electromagnetic field
in geometry (3.22) behaves like anisotropic dielectric medium. Equipotential field surfaces
are the oblate ellipsoids (3.4). Their symmetry gives two independent eigenvalues of εαβ :

εr = (r2 + a2)


LF , εθ = LF . (3.40)

In the de Sitter region dielectric medium becomes isotropic with εr = εθ = LF .
The magnetic field intensity H is related with the magnetic induction B by

Bα = µαβHβ, (3.41)

where µαβ is the tensor of magnetic permeability whose independent eigenvalues are

µr = (r2 + a2)



1

LF

, µθ = 1

LF

. (3.42)

In the de Sitter region µr = µθ = LF
−1.

The dynamic equations (3.10) yield

LF F10 = e(r2 − a2 cos2 θ)

�2
, LF F20 = −era2 sin 2θ

�2

LF F31 = ea(r2 − a2 cos2 θ)

�2
, LF F23 = ear(r2 + a2) sin 2θ

�2
.

(3.43)

In the Kerr–Newman region LF → 1 and the field components reduce to the Carter
expressions [37].

The field invariant F = FµνF
µν takes the form

F = 2

(
F 2

20

a2 sin2 θ
− F 2

10

)
. (3.44)

3.5. Elementary superconductivity

The equation of state in the co-rotating frame [6]

κ(p⊥ + ρ) = 2

(
LF F 2

10 + LF

F 2
20

a2 sin2 θ

)
(3.45)

allows one to investigate the behavior of the fields on the de Sitter vacuum disk, since geometry
defines the behavior of the left-hand side there by equation (3.35).

Equations (3.43) give

F 2
20

a2 sin2 θ
+ F 2

10 = e2

L2
F �2

. (3.46)

Putting this in (3.45) we get

κ(p⊥ + ρ) = 2e2

LF �2
. (3.47)

Equations (3.43) and (3.44) give the equation basic for study behavior of field configuration
on the disk

L2
F F = −2e2

�2
+

16e2r2a2 cos2 θ

�4
. (3.48)

Equations (3.45)–(3.48) are valid everywhere.

13
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In the second term of (3.48) we have
r2a2 cos2 θ

�2
= r2

�
− r4

�2
. (3.49)

In the equatorial plane it vanishes by (3.32), as a result at the equatorial plane (3.48) reduces
to

L2
F F�2 = −2e2. (3.50)

Combining (3.50) valid in the equatorial plane with (3.47) valid everywhere, we get in
the equatorial plane

LF F = −κ(p⊥ + ρ). (3.51)

Equations (3.50) and (3.51) give in the equatorial plane

LF = 2e2

κ�2(p⊥ + ρ)
, F = −κ2(p⊥ + ρ)2�2

2e2
. (3.52)

At the disk the field invariant F vanishes. The sign of LF coincides with that of (p⊥ + ρ)

which is everywhere non-negative, because ρ̃ ′ is everywhere non-positive for the spherically
symmetric solutions with de Sitter center.

Dielectric permeability LF goes to infinity and magnetic permeability LF
−1 goes to

zero. The de Sitter equatorial disk displays thus both perfect conductor and ideal diamagnetic
behavior.

On the disk the left-hand side in (3.45) goes to zero, so that each component in the
right-hand side vanishes

LF

F 2
20

a2 sin2 θ
= 0, LF F 2

10 = 0. (3.53)

It follows that
2e2(Br)2

κ(p⊥ + ρ)(r2 + a2)2
= 0,

2e2(Bθ )2

κ(p⊥ + ρ)a2
= 0, (3.54)

hence both (Br)2 and (Bθ )2 should vanish at the disk faster than (p⊥ +ρ), so that the magnetic
induction B vanishes. The Meissner effect takes place for a single spinning soliton and occurs
on its equatorial disk.

On the intrinsically flat disk (see equation (3.28)) we can apply the conventional definition
of the surface current [59]

g = 1 − µ

4πµ
[nB], (3.55)

where n is the normal to the surface.
On the de Sitter disk both magnetic induction B and magnetic permeability LF

−1 go to
zero independently.

Condition (3.55) relates the current density g to the magnetic induction inside a body and
thus to the currents on its surface. In a non-superconductor

∫
[nB] df = 0, so that the surface

currents always balance, and the total current is zero. The transition to a superconducting state
corresponds formally to the limits B → 0 and µ → 0. The right-hand side of (3.55) then
becomes indeterminate, and there is no condition which would restrict the possible values of
the current [59].

The currents flowing on the surface of de Sitter disk can be any and amount to a nonzero
total value. It is important that a steady flow of current on a superconductor is possible even
if no electric field is present [59].

From (3.44) and (3.45) it follows that on the disk F = −4F 2
10, so that both E2

r = F 2
10 and

E2
θ = F 2

20 vanish. The electric fields are zero at the disk, and superconducting currents can
flow eternally.

14
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4. Estimates

Nonlinear electrodynamics was proposed by Born and Infeld 70 years ago [60]. Today NED
theories appear as low energy effective limits in certain models of string/M-theory (for review
[61, 62]). Therefore the above results apply directly to the cases when relevant NED scale is
much lower than the Planck scale.

Assuming that an extended particle dominated by electromagnetic interaction can be
approached by nonlinear electrodynamics coupled to gravity, so that de Sitter vacuum is
essentially involved in mass generation [4], we can test this by two preliminary estimates:
mass-square difference for neutrino related to a gravito-electroweak scale where they get mass
from a de Sitter vacuum [63, 64], and geometric size of a lepton [65] (for a recent review [66]).

4.1. Estimate of a gravito-electroweak unification scale from experimental data on neutrino

If in the interaction region where particles are created, the interaction vertex is gravito-
electroweak, the gravity is involved essentially, and geometry around the vertex is not
Minkowski anymore.

If density in the vertex is limited, mass of a particle is finite and some of conditions (c)
holds, then geometry around the vertex can be de Sitter. If a false vacuum is somehow involved
(for example via Higgs mechanism), then geometry in the interaction region is de Sitter.

If de Sitter group is the spacetime symmetry group induced around the gravito-electroweak
vertex, then particles participating in the vertrex are described by the eigenstates of Casimir
operators in the de Sitter geometry. Their further evolution in Minkowski background requires
further symmetry change. As a result, in particular, the ‘flavor’ could emerge due to a
change in symmetry group from de Sitter group around the vertex to the Poincaré group at
infinity [63].

In the creation region, a particle is characterized by an eigenstate of the de Sitter Casimir
invariants, |I ′

1, I
′
2〉. I ′

1, I
′
2 are eigenvalues of the de Sitter Casimir operators I1 and I2 [67].

Here we need I1 to study influence of de Sitter vacuum on a mass. It reads

I1 = −�µ�µ − 1

2r2
0

JµνJ
µν, (4.1)

with

�µ =
(

1 +
r2 − c2t2

4r2
0

)
Pµ +

1

2r2
0

xνJµν. (4.2)

The scale r0 is characteristic de Sitter radius related to the vacuum density ρ0 by

r2
0 = 3c2

8πGρ0
. (4.3)

In the interaction region r2 − c2t2 � r2
0 [63], and the operator I1 is approximated by

I1 ≈ −PµP µ − 1

r2
0

(
J2 − K2

)
, (4.4)

where Jij = −Jji = εijkJk and Ji0 = −J0i = −Ki , with each of the i, j, k taking the values
1, 2, 3. The J are thus generators of Lorentz rotation and K are generators of Lorentz boosts

J = h̄
σ

2
, K = −ih̄

σ

2
(4.5)

for the right-handed fields, and

J = h̄
σ

2
, K = +ih̄

σ

2
(4.6)
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for the left-handed fields. This gives

I1 ≈ − − PµP µ − h̄2

2r2
0

σ 2. (4.7)

Its eigenvalues are

I ′
1 = µ2c2 ± h̄2

2r2
0

. (4.8)

Suppressing I ′
2, when the state |I ′

1〉 propagates in the Minkowski region, in terms of the first
Poincare Casimir operator, PµP µ, it appears as a linear superposition of two different mass
eigenstates [63]

m2
1 = µ2 +

h̄2

2c2r2
0

, m2
2 = µ2 − h̄2

2c2r2
0

(4.9)

with equal weights. We see that the de Sitter symmetry in the gravito-electroweak vertex leads
to an exact bi-maximal mixing for neutrinos. For h̄2

/(
2r2

0

)
> µ2c2,m2

2 becomes negative.
The de Sitter mixing provides thus a natural explanation [64] for the anomalous results known
as ‘negative mass squared problem’ for νe [68].

The difference in mass squares

m2 = h̄2

c2r2
0

(4.10)

is independent of whether we evaluate it for the right, or left-handed fields. However, this is
a frame-dependent evaluation. The rest frame of the interaction vertex defines the preferred
frame of the calculation [63].

Identifying ρ0 with an gravito-electroweak unification scale Munif and using (4.3), we get

m2 = 8π

3

(
Munif

mPl

)4

m2
Pl, (4.11)

which connects mass-squared difference with the unification scale. So, when the mass-squared
differences of neutrinos arise from the de Sitter mixing, the unification scale is immediately
read off from (4.11) as [63, 64]

Munif =
[

3

8π

(
m2

m2
Pl

)]1/4

mPl. (4.12)

The atmospheric neutrino data [69]

δm2
ATM = 2.5 × 10−3 eV2 (4.13)

give for the unification scale

Munif 
 14.5 TeV (4.14)

and mass-squared difference from solar neutrino data

δm2
ATM = 2.5 × 10−3 eV2 (4.15)

gives

Munif 
 5.9 TeV. (4.16)

These correspond, respectively, to r0 = 0.4 × 10−3 cm and r0 = 2.3 × 10−3 cm, and
justifies accuracy of calculations: for a particle with mass 〈m〉νe

= 0.39 eV, characteristic
curvature size is rs ∼ 10−23 cm and Compton size λC ∼ 10−5 cm.

Assuming that a neutrino mass is essentially related to de Sitter group, we obtained
estimates for the gravito-electroweak unification scale from neutrino experimental data [64],
at the same scale as predicted by theories of gravito-electroweak unification [70].
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4.2. Estimates on sizes of leptons

Electromagnetic and electro-weak experimental upper limits on sizes of leptons (see references
in [65]) are much less than their Compton wavelength. This suggests that an extended
fundamental particle can have relatively small characteristic geometrical size related to gravity.

We can estimate it by characteristic length scale r∗ in geometry with the interior de
Sitter vacuum. This implies rather natural assumption that whichever would be particular
mechanism involving de Sitter vacuum in mass generation, a fundamental particle may have
an internal vacuum core related to its mass and a geometrical size defined by gravity.

Geometrical size of an object with the interior de Sitter vacuum r∗ depends on vacuum
density at r = 0 and represents a modification of the Schwarzschild radius rg to the case when
singularity is replaced with the de Sitter vacuum. The resulting difference in sizes is quite
impressive: for elementary particles the Schwarzschild radius is many orders of magnitude
less than lPl (e.g., rg ∼ 10−57 cm for the electron); the characteristic radius r∗ gives values
close to experimental upper limits, r∗ ∼ rexp ∼ 10−18 cm for the electron getting its mass
from the vacuum at the electroweak scale [65].

We estimate geometrical sizes of fundamental particles by characteristic geometrical size
given by curvature radius rs (figure 4). In figure 6 [65] they are plotted by dark triangles, and
compared with electromagnetic (EM) and electroweak (EW) experimental limits.

Geometrical sizes for leptons are calculated with using the density profile (2.6), but the
results would not change drastically for different profiles, since a characteristic length scale in
geometry with de Sitter interior is r∗ ∼ (

r2
0 rg

)1/3
[22].

In figure 6 we show by stars quantum limits given by Compton wave length, by
white triangles electromagnetic experimental upper limits coming mainly from reaction
e+e− → γ γ (γ ) [71], by shaded squares experimental electro-weak limits [72], by dark
triangles geometrical limits on sizes calculated from (2.9) with ρ0 of the electro-weak scale
246 GeV, and by dark squares the most stringent lower limits on sizes of particles as extended
objects. This last limit is calculated by taking into account that in the case when de Sitter
vacuum is involved in mass generation, quantum region of a particle localization λC must fit
within a causally connected region confined by the de Sitter horizon r0.

The requirement λC � r0 gives the limiting scale for a vacuum density ρ0 related to a
given mass m [65]

ρ0 � 3

8π

(
m

mPl

)2

ρPl. (4.17)

This condition connects a mass of a quantum object m with the scale for vacuum density ρ0

at which this mass could be generated in principle provided that a mechanism of generation
involves de Sitter vacuum.

Let us compare characteristic sizes for an electron, its Compton wavelength, classical
and Schwarzschild radius, with geometrical limits on lepton sizes for the case when de Sitter
vacuum is involved on the electro-weak scale, on gravito-electroweak scale (4.16), and at the
most stringent scale (4.17)

λC 
 3.9 × 10−11 cm, rem 
 2.8 × 10−13 cm, rEW 
 1.5 × 10−18 cm,

rGEW 
 2 × 10−23 cm, rlowest 
 5 × 10−26 cm, rg 
 10−57 cm.

The numbers given by the de Sitter–Schwarzschild geometry are much bigger that the Planck
scale lPl ∼ 10−33 cm, which justifies application of classical general relativity for estimation
of sizes of quantum particles.
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Figure 6. Characteristic sizes for leptons [65].

5. Summary

Nonlinear electrodynamics coupled to gravity suggests that spinning particles dominated by
the electromagnetic interaction would have to have de Sitter interiors arising naturally in the
regular geometry asymptotically Kerr–Newman for a distant observer.

In nonlinear electrodynamics coupled to gravity and satisfying the weak energy condition,
regular spherically symmetric electrically charged structures have obligatory de Sitter center
where the electric field vanishes while the electrovacuum energy density achieves its maximal
value which gives an effective cut-off on self-energy density related to interior de Sitter vacuum
� = κρ0. Electromagnetic mass of spherical electrovacuum solitons is related to both de Sitter
vacuum trapped inside and smooth breaking of spacetime symmetry from the de Sitter group
in the origin to the Poincaré group at infinity.

By the Gürsey–Gürses algorithm they are transformed into spinning electrovacuum
solitons, with the following generic behavior (found for an arbitrary nonlinear Lagrangian
L(F )):

(1) Kerr–Newman behavior for a distant observer.
(2) De Sitter vacuum spread over equatorial disk which

(i) provides a finite cutoff on self-interaction,
(ii) behaves as perfect conductor and ideal diamagnetic,

(iii) supplies a particle with the finite electromagnetic mass related to breaking of
spacetime symmetry.

(3) In this economic picture the interior rotating de Sitter vacuum disk displays
superconducting behavior within a single spinning particle.

Applying these results to estimate the gravito-electroweak unification scale by the
experimental data on neutrino mass-square difference, we read off the unification scale from
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the solar and atmospheric neutrino data which gives Munif ∼ (6 − 15) TeV, i.e., at the same
scale as predicted by theories of gravito-electroweak unification.

Estimating lepton sizes by characteristic gravitational scale for spacetime with interior de
Sitter vacuum we obtain the reasonable numbers in agreement with the experimental limits.
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